

Session 1	Start-ups/SMEs looking for finance - pre-seed/angel/seed funding
Pitch Title	Sustainable pathways to biobased acrylics
Company	Låkril Technologies
Speaker	Chris Nicholas
Keywords feedstock	Lactic acid, bio-based sugars, ethyl lactate
Keywords	thermochemical, dehydration, catalyst, zeolite
technology	
Keywords	Acrylic acid, acrylates, coatings, adhesives, paints, superabsorbent
End-Product	polymers
Amount investment	Seed Round: \$2.5M round with ~ \$1M available
needed	A Round (2025/2026): \$8M
Abstract:	

In the next 5 years, a critical need is a transition to low carbon chemicals at the lowest possible cost to society. Låkril Technologies delivers industrial decarbonization by disrupting the petrochemicals industry. We see a future where drop-in industrial chemicals are produced from bio-based sugars rather than petroleum, thus alleviating reformulation costs. Our revolutionary catalyst technology for catalytic dehydration of α -hydroxy acids allows the supply of sustainable, bio-based acrylic acid and acrylate derivatives as drop-in replacements to the paints, coatings, adhesives, and superabsorbents industries at cost parity.

Acrylic acid and the four primary acrylate derivatives are the cornerstone of a \$11B market with broad application across super-absorbent polymers, paints, coatings, and adhesives formulations. Producing these chemicals necessary for modern life from sustainable pathways is of key interest given the approximately 4kg of CO₂ generated per kg of acrylic acid produced. We focus on the catalytic dehydration of feeds derived from lactic acid, a product sustainably, and commercially fermented at scale since the 1880s from a range of bio-derived sugar sources.